Docs
Examples
0003 - Simple span with distributed loading
1 min read • 144 words
Simply supported beam with distributed loads
2d
3d
test-legacy-2d.tcl
test-legacy-3d.tcl
θ
y
j
=
−
d
1
−
d
2
\theta_{yj} = -d_1 - d_2
d
1
=
a
L
N
L
/
(
E
A
)
d
2
=
w
x
L
2
/
(
2
E
A
)
d_1 = a L N L / (EA) \qquad d_2 = w_x L^2 /(2EA)
u
x
(
i
)
=
a
L
N
L
/
(
E
A
)
+
w
x
L
2
/
(
2
E
A
)
u^{(i)}_x = a L N L / (EA) + w_x L^2 /(2EA)
V
y
=
P
y
(
1
−
a
/
L
)
V_y = P_y (1-a/L)
d
1
=
−
V
y
6
E
I
z
L
(
a
2
L
−
2
a
L
2
)
and
d
2
=
w
y
L
3
24
E
I
z
d_1 = \frac{-V_y}{6 EI_z L} (a^2 L - 2 a L^2) \qquad\text{and}\qquad d_2 = \frac{w_y L^3}{24 EI_z}
\
theta_zi
=
d_1
+
d_2
[
nodeDisp
1
6
]
d
1
=
−
V
y
6
E
I
z
L
(
a
2
L
+
a
L
2
)
d_1 = \frac{-V_y}{6 EI_z L} (a^2 L + a L^2)
θ
z
(
j
)
=
d
1
−
d
2
[
n
o
d
e
D
i
s
p
2
6
]
\theta_z^{(j)} = d_1 - d_2 \qquad [nodeDisp\; 2\; 6]
d
1
=
V
z
/
(
6
E
I
y
L
)
(
a
2
L
−
2
a
L
2
)
d
2
=
−
w
z
L
3
/
(
24
E
I
y
)
d_1 = V_z/(6 EI_y L) (a^2 L - 2 a L^2) \qquad d_2 = -w_z L^3/(24 EI_y)
θ
y
(
i
)
=
d
1
−
w
z
L
3
/
(
24
E
I
y
)
[
n
o
d
e
D
i
s
p
1
5
]
\theta_{y}^{(i)} = d_1 -w_z L^3/(24 EI_y) \qquad [nodeDisp \; 1 \; 5]
d
1
=
−
V
z
6
E
I
y
L
(
a
2
L
+
a
L
2
)
d_1 = \frac{-V_z}{6 EI_y L} (a^2 L + a L^2)
θ
y
(
j
)
=
−
d
1
−
d
2
[
n
o
d
e
D
i
s
p
2
5
]
\theta_y^{(j)} = -d_1 - d_2 \qquad [nodeDisp\; 2\; 5]
0002 - Cantilever with transverse loading
0004 - Columns with P-Delta Effects
STAIRLab
Code copied to clipboard