STAIRLab logo
  • Docs 
  • Examples 
  •  

0003 - Simple span with distributed loading

1 min read • 144 words

Simply supported beam with distributed loads

2d 3d
  • test-legacy-2d.tcl
  • test-legacy-3d.tcl
θyj=−d1−d2 \theta_{yj} = -d_1 - d_2 d1=aLNL/(EA)d2=wxL2/(2EA) d_1 = a L N L / (EA) \qquad d_2 = w_x L^2 /(2EA) ux(i)=aLNL/(EA)+wxL2/(2EA) u^{(i)}_x = a L N L / (EA) + w_x L^2 /(2EA)
Vy=Py(1−a/L) V_y = P_y (1-a/L) d1=−Vy6EIzL(a2L−2aL2)andd2=wyL324EIz d_1 = \frac{-V_y}{6 EI_z L} (a^2 L - 2 a L^2) \qquad\text{and}\qquad d_2 = \frac{w_y L^3}{24 EI_z}
\theta_zi  =   d_1 + d_2  [nodeDisp 1 6]
d1=−Vy6EIzL(a2L+aL2) d_1 = \frac{-V_y}{6 EI_z L} (a^2 L + a L^2) θz(j)=d1−d2[nodeDisp  2  6] \theta_z^{(j)} = d_1 - d_2 \qquad [nodeDisp\; 2\; 6] d1=Vz/(6EIyL)(a2L−2aL2)d2=−wzL3/(24EIy) d_1 = V_z/(6 EI_y L) (a^2 L - 2 a L^2) \qquad d_2 = -w_z L^3/(24 EI_y) θy(i)=d1−wzL3/(24EIy)[nodeDisp  1  5] \theta_{y}^{(i)} = d_1 -w_z L^3/(24 EI_y) \qquad [nodeDisp \; 1 \; 5] d1=−Vz6EIyL(a2L+aL2) d_1 = \frac{-V_z}{6 EI_y L} (a^2 L + a L^2) θy(j)=−d1−d2[nodeDisp  2  5] \theta_y^{(j)} = -d_1 - d_2 \qquad [nodeDisp\; 2\; 5]
 0002 - Cantilever with transverse loading
0004 - Columns with P-Delta Effects 
0003 - Simple span with distributed loading
0003 - Simple span with distributed loading
A gallery of technical examples currated by the STAIRLab at UC Berkeley.
Code licensed BSD, docs CC BY-NC 4.0
 
Links
Home 
About 
Docs 
Examples
Working with solids 
Nonlinear dynamics 
Basic Statics 
Community
Issues   
Discussions   
Contribute 
STAIRLab
Code copied to clipboard