Docs
Examples
0004 - Columns with P-Delta Effects
1 min read • 159 words
Nonlinear geometry in frames.
P
e
L
=
π
2
E
I
L
2
and
λ
=
π
2
α
P
r
P
e
L
P_{e L} = \frac{\pi^2 E I}{L^2} \qquad\text{ and }\qquad \lambda = \frac{\pi}{2} \sqrt{\frac{\alpha P_r}{P_{e L}}}
u
y
=
H
L
3
/
(
3
E
I
)
+
H
L
/
(
κ
G
A
)
u_y = H L^3/(3 E I) + H L/(\kappa G A)
u
=
H
L
3
3
E
I
[
3
(
tan
2
λ
−
2
λ
)
(
2
λ
)
3
]
u = \frac{H L^3}{3 E I}\left[\frac{3(\tan 2\lambda - 2\lambda)}{(2\lambda)^3}\right]
M
=
H
L
[
tan
2
λ
2
λ
]
M = H L\left[\frac{\tan 2\lambda}{2\lambda}\right]
u
=
H
L
3
12
E
I
[
3
(
tan
λ
−
λ
)
λ
3
]
u = \frac{H L^3}{12 E I}\left[\frac{3(\tan \lambda - \lambda)}{\lambda^3}\right]
M
=
H
L
2
[
tan
λ
λ
]
M = \frac{H L}{2}\left[\frac{\tan \lambda}{\lambda}\right]
u
=
5
w
L
4
384
E
I
[
12
(
2
sec
λ
−
λ
2
−
2
)
5
λ
4
]
u = \frac{5 w L^4}{384 E I}\left[\frac{12\left(2 \sec \lambda - \lambda^2 - 2\right)}{5 \lambda^4}\right]
M
=
w
L
2
8
[
2
(
sec
λ
−
1
)
λ
2
]
M = \frac{w L^2}{8}\left[\frac{2(\sec \lambda - 1)}{\lambda^2}\right]
v
=
w
L
4
384
E
I
[
12
(
2
−
2
cos
λ
−
λ
sin
λ
)
λ
3
sin
λ
]
v = \frac{w L^4}{384 E I}\left[\frac{12(2 - 2 \cos \lambda - \lambda \sin \lambda)}{\lambda^3 \sin \lambda}\right]
M
=
w
L
2
12
[
3
(
tan
λ
−
λ
)
λ
2
tan
λ
]
M = \frac{w L^2}{12}\left[\frac{3(\tan \lambda - \lambda)}{\lambda^2 \tan \lambda}\right]
u
=
w
L
4
192
E
I
{
6
λ
4
[
(
2
sec
λ
−
2
λ
−
2
)
−
(
tan
λ
−
λ
)
(
sec
λ
−
1
)
(
1
2
λ
−
1
tan
2
λ
)
]
}
u = \frac{w L^4}{192 E I}\left\{\frac{6}{\lambda^4}\left[(2 \sec \lambda - 2\lambda - 2) - \frac{(\tan \lambda - \lambda)(\sec \lambda - 1)}{\left(\frac{1}{2\lambda} - \frac{1}{\tan 2\lambda}\right)}\right]\right\}
M
=
w
L
2
8
[
2
(
tan
λ
−
λ
)
λ
2
(
1
2
λ
−
1
tan
2
λ
)
]
M = \frac{w L^2}{8}\left[\frac{2(\tan \lambda - \lambda)}{\lambda^2\left(\frac{1}{2\lambda} - \frac{1}{\tan 2\lambda}\right)}\right]
References
R.C.Kaehler, D.W.White, Y.D.Kim, “Frame Design Using Web-Tapered Members”, AISC 2011
0003 - Simple span with distributed loading
0005 - Nonlinear elastic columns with shear
STAIRLab
Code copied to clipboard